K Modulo N. Modulo n, where φ is the euler phi function. Given two numbers, a (the dividend) and n (the divisor), a modulo n (abbreviated as a mod n) is the remainder from the.
And modulo $11$, you only got the possible values $1, 3, 9, 5, 4$ and the sequence starts hence $3$ is not a primitive root modulo $11$. Then for any $k \ge 1$, $a^k$ has multiplicative order $\dfrac c {\gcd \left\{{c, k}\right\}}$ modulo $n$. Invert denominator modulo p den = invert_mod(den,p);
Invert denominator modulo p den = invert_mod(den,p);
On voit ici que la période de 3 k modulo 7 est 6. Questo tool ti permette di risolvere online le potenze modulo n passo dopo passo. Then for any $k \ge 1$, $a^k$ has multiplicative order $\dfrac c {\gcd \left\{{c, k}\right\}}$ modulo $n$. On voit ici que la période de 3 k modulo 7 est 6.
Nessun commento:
Posta un commento