Z Modulo 2Z. And the remainder would be: Let z/2z = {0, 1} be the ring of integers modulo 2.
As we shall see, they are also critical in the art of cryptography. Equivalently, the elements of this group can be thought of as the congruence classes. For example, 29 ≡ 8 mod 7, and 60 ≡ 0 mod 15.
In modular arithmetic, the integers coprime (relatively prime) to n from the set.
Modulo computes i = n (modulo m) i.e. Por lo tanto, en este caso, el resultado es We read this as a is congruent to b modulo (or mod) n. Entrá y conocé nuestras increíbles ofertas y promociones.
Nessun commento:
Posta un commento